Mesoscopic physics is the name given to electronic behaviour in solid state nanostructures that are so small that their size is similar to relevant characteristic length scales. Examples of such length scales include the elastic mean free path (which governs the scale for ballistic transport), the phase coherence length (quantum interference effects), and the electronic wavelength (quantum confinement). The aim of this course is to describe key experimental transport phenomena including weak localisation, universal conductance fluctuations, Aharonov-Bohm oscillations, and conductance quantisation whilst giving an overview of theoretical methods such as the tight binding model, the Landauer-Büttiker formulism, scattering theory, and scaling theory.

Ed McCann works in the condensed matter theory group at Lancaster University. Recently, his research has been focussed on the properties of chiral electrons in graphene and graphene multilayers, looking at their transport and spectroscopic properties.